

AAAI 2024

Authors: Jie Ruan, Xiao Pu, Mingqi Gao, Xiaojun Wan, Yuesheng Zhu

Presenter: Jie Ruan

2024.2

CONTENTS

01 Background

02 Introduction

03 Methodology

04 Experiment

05 Conclusion

PART 01

Background

Why is Reliable AI Generated Content Evaluation Important?

- Evaluation methods/criteria serve as the 'lighthouse' guiding the development of NLG technology:
 - Used to assess the performance of models/systems
 - ◆ Act as parameter tuning objectives
 - Serve as optimization targets for models

How to Evaluate AI Generated Content?

Challenge: Similar content in text can often be expressed in various ways, and the same output of the NLG system may need to satisfy multiple goals in different aspects **Three Factors:**

Reproducibility

- Consistent results for multiple evaluations under the same setup (hardware, software, personnel, environment, etc.)
- Consistent results for multiple evaluations under different settings

Fairness

- Objectively reflect the
 - quality of the generated text
- Fair comparison of different models/systems

Cost-efficient

 Low evaluation cost and high efficiency

How to Evaluate AI Generated Content?

Challenge: Similar content in text can often be expressed in various ways, and the same output of the NLG system may need to satisfy multiple goals in different aspects

PART 02

Introduction

Jie Ruan, Xiao Pu, Minqi Gao, Xiaojun Wan and Yuesheng Zhu. Better than Random: Reliable NLG Human Evaluation with Constrained Active Sampling. Accepted by AAAI 2024.

39.30%

Random Sampling

60.70%

Introduction

Motivation

- To save labor and costs, researchers usually perform human evaluation on a small subset of data sampled from the whole dataset in practice.
- Problem of Random Sampling
 - Clustered Selection
 - ◆ Data Manipulation
 - Different selection subsets lead to
 - different inter-system rankings

Experimental results from 137 real NLG evaluation setups on 44 human metrics across 16 datasets and 5 NLG tasks show 87.5% of datasets have different inter-system rankings across 5 times of random sampling.

8

PART 02

Methodology

Problem Statement

The goal of sampling in human evaluation is to select part of the samples with the intention of estimating the inter-system ranking of the whole sample population. Ideally, the subset obtained by the sampling method should cover more representative samples of the population.

11

Sample Representativeness

- ♦ Quality Diversity: Evaluation on qualitatively diverse subsets of samples allows the system to better reflect the performance of all samples
- **Redundancy**: The degree of similarity or duplication among the generated outputs of samples

Sample for Evaluation

Sample Representativeness

- ♦ Quality Diversity: Evaluation on qualitatively diverse subsets of samples allows the system to better reflect the performance of all samples
- **Redundancy**: The degree of similarity or duplication among the generated outputs of samples

How to Calculate Sample Quality Score? Utilizing Automatic Metrics

♦ As various automatic metrics can measure the characteristics of samples in different aspects and are easy to calculate with lower cost, we use scores of automatic metrics as features to predict the quality of samples.

Sample Quality Score

How to Calculate Sample Quality Score? Utilizing Automatic Metrics

♦ As various automatic metrics can measure the characteristics of samples in different aspects and are easy to calculate with lower cost, we use scores of automatic metrics as features to predict the quality of samples.

[1] Jie Ruan, Xiao Pu, Minqi Gao, Xiaojun Wan and Yuesheng Zhu. Better than Random: Reliable NLG Human Evaluation with Constrained Active Sampling. Accepted by AAAI 2024.

Sample Representativeness

- ✓ Quality Diversity: Evaluation on qualitatively diverse subsets of samples allows the system to better reflect the performance of all samples
- **Redundancy**: The degree of similarity or duplication among the generated outputs of samples

Constrained Controller

•

Preliminary Sampling Phase

Batch Sampling Phases

[1] Jie Ruan, Xiao Pu, Minqi Gao, Xiaojun Wan and Yuesheng Zhu. Better than Random: Reliable NLG Human Evaluation with Constrained Active Sampling. Accepted by AAAI 2024.

PART 04

Experiment

Experiment Setup

Tasks and Datasets

Summarization (SUM):

- ♦ SummEval (Fabbri et al. 2021)
- ◆ REALSumm (Bhandari et al. 2020)
- ♦ Newsroom (NeR18) (Grusky, Naaman, and Artzi 2018)
- ♦ DialSummEval (Gao and Wan 2022)
- ♦ OpenAI-axis1 (Stiennon et al. 2020; Volske et al. 2017)
- ♦ OpenAI-axis2
- ♦ OpenAI-CNN/DM1
- ♦ OpenAI-CNN/DM3

Machine Translation (MT):

- ♦ newstest2020 en-de
- ♦ newstest2020 cn-en
- ♦ newstest2021 cn-en (Freitag et al. 2021)

Dialogue Generation (DialoGen):

◆ Persona Chat (Mehri and Eskenazi 2020)

Story Generation (StoryGen):

- ♦ MANS-ROC (Guan et al. 2021)
- ♦ MANS-WP (Guan et al. 2021)

Multi-Modal Generation (MMGen):

- ◆ THUMB-MSCOCO (Kasai et al. 2022)
- ◆ VATEX-EVAL (Shi et al. 2022)

Experiment Setup

Evaluation Metrics

♦ Kendall's Tau Correlation^[1]

Comparison of Methods

- **A Random Sampling (Random)**
- ♦ Heuristic Sampling (Heuristic):
 - First sorts the samples according to the average sentence length of the sentences generated by all systems. Then, Heuristic randomly collects a small number of samples with extreme sentence length and a large number of samples with normal sentence length.
- ◆ Eight Metric (8M)
- ♦ Single Metric (SM)
- ♦ Online Sampling (OL)

Results and Analysis

Full Inter-System Ranking Accuracy

Experiment results on 137 real NLG evaluation setups with 44 human evaluation metrics across 16 datasets and 5 NLG tasks demonstrate the proposed method ranks first and second on 95.45% of the human metrics with 0.83 overall intersystem ranking Kendall correlation.

Task	Dataset	HE Metric	Random I	Random 2	Random 3	Random Mean	Heuristic I	Heuristic 2	Heuristic 3	Heuristic Mean	8M	SM	OL.	CASF (ours)	Task	Dataset	HE Metric	Random I	Random 2	Random 3	Random Mean	Heuristic	Heuristic 2	Heuristic 3	Heuristic Mean	8M	SM	OL.	(Ours)
	SummEval	coherence consistency	0.8500	0.6500	0.3333 0.4333	0.6111 0.3889	0.7000	0.8167 0.0167	0.9167 0.6500	0.8111	0.4167	0.4167	0.8667	0.9500 0.5333		newstest2020 en-de	MQM pSQM	0.1429 0.8095	0.1429 0.9048	0.1429 0.9048	$\frac{0.1429}{0.8730}$	0.3333 0.8095	0.1429 0.9048	-0.0476 0.9048	0.1429 0.8730	0.1429 1.0000	0.9048	0.1429 0.9048	0.1429
		relevance	0.4000	0.3500	0.5167	0.6667	0.4500	0.4500	0.3000	0.4000	0.3500	0.3667	0.5167	0.3333	MT	newstest2020 cn-en	MQM	0.7857	0.9286	0.7143	0.8095	0.6429	0.8571	0.7143	0.7381	0.1429	0.9286	0.8571	0.9286
	REALSumm	litepyramid	0.3913	0.5362	0.4420	0.4565	0.3551	0.3841	0.4420	0.3937	0.3261	0.3696	0.5435	0.5435			poQM	0.4280	0.3571	0.7857	0.5258	0.2857	0.8571	0.4280	0.5258	0.3571	0.9286	0.7857	0.7857
		coherence	1.0000	1.0000	0.4286	0.8095	0.9048	0.9048	0.9048	0.9048	1,0000	1.0000	1.0000	1.0000		newstest2021 cn-en	MQM	0,0000	-0.1282	-0.0513	-0.0598	-0.0513	-0.0256	-0.0513	-0.0427	0.4615	0.1282	0.0000	0.0256
	NeP 18	fluency	0.5238	1.0000	1.0000	0.8413	1.0000	0.5238	0.9048	0.8095	1,0000	1.0000	1.0000	1.0000			Understandable	0.33333	-L0000	0.3333	-0.1111	-1.0000	0.3333	0.3333	-0.1111	0.3333	0.3333	0.3333	0.3333
	JACKED	informativeness	1,0000	1.0000	1.0000	1,0000	0.7143	1.0000	0.9048	0.8730	0.7143	1.0000	1.0000	1.0000			Natural	0.3333	-1.0000	1.0000	0.1111	1.0000	-1.0000	0 3333	0.1111	0.3333	0.3333	0.3333	1.0000
	2	relevance	1.0000	0.5238	1.0000	0.8413	0.9048	0,9048	0.9048	0.9048	1.0000	1.0000	1.0000	1.0000	121-21	121.2	Maintains Context	1,0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1,0000	-1.0000	1,0000	1,0000	1,0000
		consistency	0.7436	0.7179	0.4872	0.6496	0.7436	0.6410	0.6154	0.6667	0.5897	0.5641	0.5385	0,7692	DialoGen	Persona Chat	Interacting	1.0000	1,0000	1.0000	1.0005	1,0000	6 2332	1.0000	0 7778	1.0000	1.0000	1 0000	1 0005
	Distant	relevance	0.6923	0.4615	0.6410	0.5983	0.6410	0.6923	0.5385	0.6239	0.2308	0.4359	0.5897	0.7179			Day Provide day	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.1710	1,0000	1.0000	1,0000	1,0000
	Dationality	fluency	0.5897	0.5641	0.5897	0.5812	0.3846	0.5641	0.5128	0.4872	0.1538	0.4872	0.6410	0.6154		USES 1	Uses Knowledge	1.0000	1.0009	1,0000	1,0000	-17000	1,0000	1.0000	0.3333	1,0000	170000	170000	1,0000
SUM		coherence	0.6667	0.7949	0.7436	0.7350	0.7436	0.7949	0.5897	0.7094	0.5897	0.6667	0.8205	0.8974			Overall Quality	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1,0000
aum		accuracy	0.8000	0.0000	1.0000	0.6000	0.8000	1.0000	0.8000	0.8667	0.8000	0.0000	0.0000	1.0000	StoryGen	MANS-ROC	overall	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	OpenALavial	coherence	0.4000	0.8000	0.0000	0.4000	0.8000	0.2000	0.8000	0.6000	0.8000	0.4000	0.2000	0.8000	and our	MANS-WP	merall	1.0000	0.8800	0.8000	0.8667	0.8000	1.0000	1.0000	0.0133	1.0000	1.0000	1.0000	1.6000
	open it sourt	coverage	1.0000	1.0000	1.0000	1.0000	0.8900	0.8000	0.8000	0.8000	0.8000	1.0000	0.8000	0.8000	1000-000	THEMP MS(V)(V)	or exercised in the second sec	1.0/00	0.9000	1.0000	0.0222	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1 4005	1.0005
		overali	0.8000	1.0000	1.0000	0.9333	0.8000	1.0000	0.8000	0.8667	0.8000	1.0000	0.8000	1.0000	MMGen	THUMB-MSCOCO	045198	1.0000	0.8000	170000	0.9333	1.0000	310000	1.0000	1,0000	379900	1,0000	176006	17000
		accuracy	0.7143	0.4286	1.0000	0.7143	0.6190	0.7143	0.8095	0.7143	1.0000	0.5238	0.1429	0.9048		VATEX-EVAL	consistency	0.6000	1.0000	0.6000	0.7333	0.6000	1.0000	1.0000	0.8667	1.0000	1.0000	1.0000	1.0000
	OnenAI-axis7	coherence	0.2381	0.5238	0.3333	0.3651	-0.1429	0.2381	0.4286	0.1746	0.2381	0.5238	0.2381	0.4286	<u></u>	Overall Performa	nce	0.6880	0.6147	0.7503	0.6843	0.6149	0.6729	0.6547	0,7180	0.6686	0.7178	0.6790	0.8332
	opin it asise	coverage	1.0000	0.7143	0.9048	0.8730	1.0000	0.9048	1.0000	0.9683	1,0000	1.0000	1.0000	1.0000			1310		2004-025	10121200		2000/01					And a second		
		overall	0.9048	0.7143	1.0000	0.8730	0.6190	1.0000	0.9048	0.8413	0.9048	0.9048	0,9048	1.0000															
		accuracy	0.7333	0.8222	0.8222	0.7926	0.8667	0.7778	0.8222	0.8222	0.7333	0.6889	0.7778	0.8667															
	OpenALCNN/DM1	coherence	0.5111	0.3333	0.5556	0.4667	0.4222	0.5111	0.5556	0,4963	0.5556	0.2000	0.6000	0.6000															
	opinin cristiani	coverage	0.3778	0.3778	0.8667	0.5407	0.5111	0.8667	0.5111	0.6296	1.0000	1.0000	0,4222	0.8667															
		overall	0.8667	0.5111	1.0000	0.7926	1.0000	0.7333	0.5111	0.7481	1.0000	0.3778	0.4667	1.0000															
		accuracy	1.0000	0.3333	1.0000	0.7778	1.0000	0.3333	0.3333	0,5556	0.3333	1.0000	0.3333	1.0000															
	OpenALCNN/DM1	coherence	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.3333	1.0000															
	openne carrierano	coverage	0.3333	1.0000	1.0000	0.7778	0.3333	1.0000	1.0000	0.7778	1.0000	1.0000	1,0000	1,0000															
		overall	0.3333	1.0000	1.0000	0,7778	0.3333	1.0000	1,0000	0.7778	1,0000	1.0000	1.0000	1.0000											12				
																									12				
																									5				
																									St. 1.				

Top-Ranked System Accuracy

Experiment results on 137 real NLG evaluation setups with 44 human evaluation metrics across 16 datasets and 5 NLG tasks demonstrate the proposed method receives 93.18% top-ranked system recognition accuracy.

Table 2: Top-ranked accuracy on 16 datasets across 5 NLG tasks. 'Overall' represents the average result on all human metrics from all tasks. **Bold number** indicates that the method has the best performance among all methods.

Method	SUM	MT	DialoGen	StoryGen	MMGen	Overall
Random	0.7586	0.8667	0.7778	0.6667	1.0000	0.7597
Heuristic	0.8046	0.6667	0.7778	0.6667	1.0000	0.7829
8M	0.8276	0.8000	0.8333	1.0000	1.0000	0.8409
SM	0.8966	1.0000	0.8333	1.0000	1.0000	0.9091
OL	0.6897	0.8000	1.0000	1.0000	1.0000	0.7727
CASF (ours)	0.9310	0.8000	1.0000	1.0000	1.0000	0.9318

Case Study

- The risk of random sampling: Different sampling subsets may result in different inter-system rankings, making human evaluation unreliable.
- CASF selects the same subset in multiple times of sampling, and the variance of the inter-ranking accuracy obtained by multiple sampling times on a total of 44 human metrics is 0.
- Since CASF selects representative samples, it obtains more accurate inter-system rankings, making human evaluation more reliable.

System System Ranking Sampling Method	sup4_ppo _rm4_t.7	pretrain _6b_t.7	sup4_6b_ ppo_rm4 _6b_t.7	sup4_6b_ t0.7	sup4_12b _ ^{t0}	Kendall's Tau
Ground Truth	3	4	1	0	2	1
Random 1	4	3	1	0	2	0.80
Random 2	3	1	4	0	2	0.00
Random 3	I	3	4	0	2	0.20
Heuristic 1	1	4	3	.0	2	0.40
Heuristic 2	1	3	4	0	2	0.20
Heuristic 3	4	3	1	0	2	0.80
8M	4	3	1	0	2	0.80
SM	3	1	4	0	2	0.00
OL	3	1	4	0	2	0.00
CASF (ours)	3	4	1	0	2	1.00

Figure 4: Inter-system ranking of human evaluation aspect 'accuracy' of the summarization dataset OpenAI-axis1. Ground truth is the inter-system ranking on the entire dataset. Other sampling methods take 50% of the dataset. Rankings in red indicate incorrect rankings.

Results and Analysis

Automatic Metric for Preliminary Phase

Table 4: Experiment results of CASF on NLG tasks preranking on different automatic metrics. 'Overall' represents the average result on all human metrics from all tasks. **Bold number** indicates that the automatic metric ranks first among all automatic metrics. <u>Underlined number</u> indicates that the automatic metric ranks second among all metrics.

Automatic Metric	SUM	MT	DialoGen	StoryGen	MMGen	Overall
BERT-SCORE	0.7361	0.5799	0.6667	1.0000	1.0000	0.7329
MOVER-SCORE	0.8429	0.5766	0.8889	1.0000	1.0000	0.8332
ROUGE-1	0.7308	0.5700	0.6667	0.3000	1.0000	0.6965
ROUGE-2	0.7266	0.5491	0.5556	1.0000	0.8000	0.6989
ROUGE-L	0.7196	0.5209	0.8889	1.0000	1.0000	0.7456
BART-SCORE	0.6015	0.4370	0.8889	0.9000	0.8000	0.6446
BLEU	0.7196	0.3718	0.5556	1.0000	0.8000	0.6741
METEOR	0.7821	0.5359	0.8889	1.0000	1.0000	0.7885

Phases and Associated Sampling Ratios

- ◆ In most cases, the experimental performance is better when the number of iteration phases is 5.
- There is no need to set the preliminary sampling ratio and the batch sampling ratio separately, because it is simple and effective to directly sample each phase according to the total sampling rate and the number of phases.

Table 3: Experimental results on 44 human metrics with different mode (Average and Preliminary-Fixed (P-Fixed)), number of phases (# Phase), preliminary sample ratio (P-R) and batch sampling ratio (B-R) of each phase for the proposed CASF.

Mode	# Phase	P-R	B-R	Tau	Mode	# Phase	P-R	B-R	Tau	Mode	# Phase	P-R	B-R	Tau	Mode	# Phase	P-R	B-R	Tau					
	2	0.2500	0.2500	0.7507	P-Fixed	2	0.1000	0.4000	0.7330		2	0.0500	0.4500	0.7449	P-Fixed	2	0.1500	0.3500	0.7347					
	3	0.1667	0.1667	0.7567		3	0.1000	0.2000	0.7547	P-Fixed	3	0.0500	0.2250	0.7418		3	0.1500	0.1750	0.7670					
	4	0.1250	0.1250	0.7557		4	0.1000	0.1333	0.8046		4	0.0500	0.1500	0.7663		4	0.1500	0.1167	0.7612					
	5	0.1000	0.1000	0.8332		5	0.1000	0.1000	0.8332		5	0.0500	0.1125	0.7739		5	0.1500	0.0875	0.7647					
Average	6	0.0833	0.0833	0.7214		6	0.1000	0.0800	0.7543		6	0.0500	0.0900	0.7276		6	0.1500	0.0700	0.7109					
2.10.002-0000- 0 020	7	0.0714	0.0714	0.7237		7	0.1000	0.0667	0.6892	112-07-004-07-0	7	0.0500	0.0750	0.6859		7	0.1500	0.0583	0.7285					
	8	0.0625	0.0625	0.7037		8	0.1000	0.0571	0.7269		8	0.0500	0.0643	0.7158		8	0.1500	0.0500	0.7884					
	9	0.0556	0.0556	0.7258		9	0.1000	0.0500	0.7237		9	0.0500	0.0563	0.7190		9	0.1500	0.0438	0.7471					
	10	0.0500	0.0500	0.7511		10	0.1000	0.0444	0.7250		10	0.0500	0.0500	0.7511		10	0.1500	0.0389	0.6987					
																		12						

PART 05

Conclusion

Conclusion

Towards Reliable Human Evaluation

- We focused on giving a more correct inter-system ranking for reliable human evaluation with limited time and cost.
- We propose a Constrained Active Sampling Framework and show the overall inter-system Kendall correlation improved by 41% to 0.83 compared to the widely used random sampling method in a total of 44 human evaluation metrics across 16 datasets in 5 NLG tasks. CASF ranked first or ranked second among all comparison methods on up to 90.91% of the human metrics.
- ♦ We release a tool and we strongly recommend using the Constrained Active Sampling Framework for reliable human evaluation in future works to get a more reliable inter-system ranking.

Better than Random: Reliable NLG Human Evaluation with Constrained Active Sampling

Jie Ruan, Xiao Pu, Mingqi Gao, Xiaojun Wan, Yuesheng Zhu

Peking University {ruanjie,puxiao}@stu.pku.edu.cn, {gaomingqi,wanxiaojun,zhuys}@pku.edu.cn

Abstract

Human evaluation is viewed as a reliable evaluation method for NLG which is expensive and time-consuming. In order to save labor and costs, researchers usually perform human evaluation on a small subset of data sampled from the whole dataset in practice. However, different selection subsets will lead to different rankings of the systems. To give a more correct inter-system ranking and make the gold standard human evaluation more reliable, we propose a Constrained Active Sampling Framework (CASF) for reliable human judgment.

THANK YOU!

Better than Random:

Reliable NLG Human Evaluation with Constrained Active Sampling

Presenter: Jie Ruan

ruanjie@stu.pku.edu.cn